typestatusdateslugsummarytagscategoryiconpassword博客部署The AI workspace that works for you. | NotionA tool that connects everyday work into one space. It gives you and your teams AI tools—search, writing, note-taking—inside an all-in-one, flexible workspace.https://www.notion.so/Notion 博客 | Notion一个NotionNext搭建的博客https://tanghh.notion.site/02ab3b8678004aa69e9e415905ef32a5github.comhttps://github.com/tangly1024/NotionNext/forkVercel: Build and deploy the best web experiences with the Frontend CloudVercel's Frontend Cloud gives developers the frameworks, workflows, and infrastructure to build a faster, more personalized web.https://vercel.com/ 常用工具Find Icons with the Perfect Look & Feel | Font AwesomeUsed by millions of designers, devs, & content creators. Open-source. Always free. Check out the all-new Sharp Solid icons, available in Font Awesome 6 Pro.https://fontawesome.com/icons壁纸社区 - 发现并免费下载高清4K壁纸 - 哲风壁纸【壁纸社区】专注壁纸爱好者交流与创意分享!实时互动讨论「电脑/手机壁纸搭配技巧」,发帖寻求壁纸图片资源,互换独家高清图片,探索热门壁纸灵感。立即加入,共创视觉盛宴!https://haowallpaper.com/wallpaperForumBing Image CreatorFree, AI-powered Bing Image Creator and Bing Video Creator turn your words into stunning visuals and engaging videos in seconds. Generate images and videos quickly and easily, powered by DALL-E and Sora.https://www.bing.com/images/create?FORM=GENILP#材料计算ALKEMIENew page for ALKEMIEhttps://alkemie.cloud/index.htmlBohrium | AI for Science with Global Scientistshttps://bohrium.dp.tech/GPUMD – Graphics Processing Units Molecular Dynamics — GPUMD documentationGPUMD stands for Graphics Processing Units Molecular Dynamics. It is a general-purpose molecular dynamics (MD) package fully implemented on graphics processing units (GPU). In addition to several empirical interatomic potentials, it supports neuroevolution potential (NEP) models. GPUMD also allows one to construct the latter type of models using the nep executable.https://gpumd.org/机器学习drive.google.comhttps://drive.google.com/drive/my-drive前言 — 动手学深度学习 2.0.0 documentation几年前,在大公司和初创公司中,并没有大量的深度学习科学家开发智能产品和服务。我们中年轻人(作者)进入这个领域时,机器学习并没有在报纸上获得头条新闻。我们的父母根本不知道什么是机器学习,更不用说为什么我们可能更喜欢机器学习,而不是从事医学或法律职业。机器学习是一门具有前瞻性的学科,在现实世界的应用范围很窄。而那些应用,例如语音识别和计算机视觉,需要大量的领域知识,以至于它们通常被认为是完全独立的领域,而机器学习对这些领域来说只是一个小组件。因此,神经网络——我们在本书中关注的深度学习模型的前身,被认为是过时的工具。https://zh-v2.d2l.ai/chapter_preface/index.html